Source code for pyfar.dsp.dsp

"""Digital signal processing functions."""
import multiprocessing
import numpy as np
from scipy import signal as sgn
import pyfar
from pyfar.dsp import fft
from pyfar.classes.warnings import PyfarDeprecationWarning
from pyfar._utils import rename_arg
import warnings
import scipy.fft as sfft


[docs] def phase(signal, deg=False, unwrap=False): """Returns the phase for a given signal object. Parameters ---------- signal : Signal, FrequencyData pyfar Signal or FrequencyData object. deg : Boolean Specifies, whether the phase is returned in degrees or radians. unwrap : Boolean Specifies, whether the phase is unwrapped or not. If set to ``'360'``, the phase is wrapped to 2 pi. Returns ------- phase : numpy array The phase of the signal. """ if not isinstance(signal, pyfar.Signal) and \ not isinstance(signal, pyfar.FrequencyData): raise TypeError( 'Input data has to be of type: Signal or FrequencyData.') phase = np.angle(signal.freq) if np.isnan(phase).any() or np.isinf(phase).any(): raise ValueError('Your signal has a point with NaN or Inf phase.') if unwrap is True: phase = np.unwrap(phase) elif unwrap == '360': phase = wrap_to_2pi(np.unwrap(phase)) if deg: phase = np.degrees(phase) return phase
[docs] def group_delay(signal, frequencies=None, method='fft'): """Returns the group delay of a signal in samples. Parameters ---------- signal : Signal An audio signal object from the pyfar signal class frequencies : array-like Frequency or frequencies in Hz at which the group delay is calculated. The default is ``None``, in which case signal.frequencies is used. method : 'scipy', 'fft', optional Method to calculate the group delay of a Signal. Both methods calculate the group delay using the method presented in [#]_ avoiding issues due to discontinuities in the unwrapped phase. Note that the scipy version additionally allows to specify frequencies for which the group delay is evaluated. The default is ``'fft'``, which is faster. Returns ------- group_delay : numpy array Frequency dependent group delay of shape (:py:func:`~pyfar.Signal.cshape`, frequencies). References ---------- .. [#] https://www.dsprelated.com/showarticle/69.php """ # check input and default values if not isinstance(signal, pyfar.Signal): raise TypeError('Input data has to be of type: Signal.') if frequencies is not None and method == 'fft': raise ValueError( "Specifying frequencies is not supported for the 'fft' method.") frequencies = signal.frequencies if frequencies is None \ else np.asarray(frequencies, dtype=float) if method == 'scipy': # get time signal and reshape for easy looping time = signal.time time = time.reshape((-1, signal.n_samples)) # initialize group delay group_delay = np.zeros((np.prod(signal.cshape), frequencies.size)) # calculate the group delay for cc in range(time.shape[0]): group_delay[cc] = sgn.group_delay( (time[cc], 1), frequencies, fs=signal.sampling_rate)[1] # reshape to match signal group_delay = group_delay.reshape(signal.cshape + (-1, )) elif method == 'fft': if signal.complex: freq_k = fft.fft(signal.time * np.arange(signal.n_samples), signal.n_samples, signal.sampling_rate, fft_norm='none') else: freq_k = fft.rfft(signal.time * np.arange(signal.n_samples), signal.n_samples, signal.sampling_rate, fft_norm='none') group_delay = np.real(freq_k / signal.freq_raw) # catch zeros in the denominator group_delay[np.abs(signal.freq_raw) < 1e-15] = 0 else: raise ValueError( "Invalid method, needs to be either 'scipy' or 'fft'.") return group_delay
[docs] def wrap_to_2pi(x): """Wraps phase to 2 pi. Parameters ---------- x : double Input phase to be wrapped to 2 pi. Returns ------- x : double Phase wrapped to 2 pi`. """ positive_input = (x > 0) zero_check = np.logical_and(positive_input, (x == 0)) x = np.mod(x, 2*np.pi) x[zero_check] = 2*np.pi return x
[docs] def linear_phase(signal, group_delay, unit="samples"): r""" Set the phase to a linear phase with a specified group delay. The linear phase signal is computed as .. math:: H_{\mathrm{lin}} = |H| \mathrm{e}^{-j \omega \tau}\,, with :math:`H` the complex spectrum of the input data, :math:`|\cdot|` the absolute values, :math:`\omega` the frequency in radians and :math:`\tau` the group delay in seconds. Parameters ---------- signal : Signal input data group_delay : float, array like The desired group delay of the linear phase signal according to `unit`. A reasonable value for most cases is ``signal.n_samples / 2`` samples, which results in a time signal that is symmetric around the center. If group delay is a list or array it must broadcast with the channel layout of the signal (``signal.cshape``). unit : string, optional Unit of the group delay. Can be ``'samples'`` or ``'s'`` for seconds. The default is ``'samples'``. Returns ------- signal: Signal linear phase copy of the input data """ if not isinstance(signal, pyfar.Signal): raise TypeError("signal must be a pyfar Signal object.") # group delay in seconds if unit == "samples": tau = np.asarray(group_delay) / signal.sampling_rate elif unit == "s": tau = np.asarray(group_delay) else: raise ValueError(f"unit is {unit} but must be 'samples' or 's'.") # linear phase phase = 2 * np.pi * signal.frequencies * tau[..., np.newaxis] # construct linear phase spectrum signal_lin = signal.copy() signal_lin.freq_raw = \ np.abs(signal_lin.freq_raw).astype(complex) * np.exp(-1j * phase) return signal_lin
[docs] def zero_phase(signal): r"""Calculate zero phase signal. The zero phase signal is obtained by taking the absolute values of the spectrum .. math:: H_z = |H| = \sqrt{\mathrm{real}(H)^2 + \mathrm{imag}(H)^2}, where :math:`H` is the complex valued spectrum of the input data and :math:`H_z` the real valued zero phase spectrum. The time domain data of a zero phase signal is symmetric around the first sample, e.g., ``signal.time[0, 1] == signal.time[0, -1]``. Parameters ---------- signal : Signal, FrequencyData input data Returns ------- signal : Signal, FrequencyData zero phase copy of the input data """ if not isinstance(signal, (pyfar.Signal, pyfar.FrequencyData)): raise TypeError( 'Input data has to be of type Signal or FrequencyData.') signal_zero = signal.copy() signal_zero.freq_raw = np.atleast_2d(np.abs(signal_zero.freq_raw)) return signal_zero
def nextpow2(x): """Returns the exponent of next higher power of 2. Parameters ---------- x : double Input variable to determine the exponent of next higher power of 2. Returns ------- nextpow2 : double Exponent of next higher power of 2. """ return np.ceil(np.log2(x))
[docs] def spectrogram(signal, window='hann', window_length=1024, window_overlap_fct=0.5, normalize=True): """Compute the magnitude spectrum versus time. This is a wrapper for :py:meth:`scipy.signal.ShortTimeFFT.spectrogram` with two differences. First, the returned times refer to the start of the FFT blocks, i.e., the first time is always 0 whereas it is window_length/2 in scipy. Second, the returned spectrogram is normalized according to ``signal.fft_norm`` if the ``normalize`` parameter is set to ``True``. Parameters ---------- signal : Signal Signal to compute spectrogram of. window : str Specifies the window (see :py:mod:`scipy.signal.windows`). The default is ``'hann'``. window_length : integer Window length in samples, the default ist 1024. window_overlap_fct : double Ratio of points to overlap between FFT segments [0...1]. The default is ``0.5``. normalize : bool Flag to indicate if the FFT normalization should be applied to the spectrogram according to `signal.fft_norm`. The default is ``True``. Returns ------- frequencies : numpy array Frequencies in Hz at which the magnitude spectrum was computed. For complex valued signals, frequencies and spectrogram is arranged such that 0 Hz bin is centered. times : numpy array Times in seconds at which the magnitude spectrum was computed spectrogram : numpy array """ # check input if not isinstance(signal, pyfar.Signal): raise TypeError('Input data has to be of type: Signal.') if window_length > signal.n_samples: raise ValueError("window_length exceeds signal length") if not isinstance(normalize, bool): raise TypeError("The normalize parameter needs to be boolean") # get spectrogram from scipy.signal window_overlap = int(window_length * window_overlap_fct) window = sgn.get_window(window, window_length) hop = window_length - window_overlap fft_mode = 'twosided' if signal.complex else 'onesided' SFT = sgn.ShortTimeFFT(window, hop, signal.sampling_rate, fft_mode=fft_mode, scale_to='magnitude') spectrogram = \ SFT.spectrogram(signal.time, p0=0, p1=(signal.n_samples-window_overlap)//SFT.hop, k_offset=window_length//2, detr='constant') # scipy returns the squared magnitude, therefore we take the square root spectrogram = np.sqrt(spectrogram) frequencies = SFT.f times = SFT.t(signal.n_samples, p0=0, p1=(signal.n_samples-window_overlap)//SFT.hop, k_offset=window_length//2) # remove normalization from scipy.signal.spectrogram spectrogram /= np.sqrt(1 / window.sum()**2) # apply normalization from signal if normalize: spectrogram = fft.normalization( spectrogram, window_length, signal.sampling_rate, signal.fft_norm, window=window) # rearrange spectrogram and frequencies to center 0 Hz bin if signal.complex: frequencies = sfft.fftshift(frequencies) spectrogram = sfft.fftshift(spectrogram, axes=0) # scipy.signal takes the center of the DFT blocks as time stamp we take the # beginning (looks nicer in plots, both conventions are used) times -= times[0] return frequencies, times, spectrogram
[docs] def time_window(signal, interval, window='hann', shape='symmetric', unit='samples', crop='none', return_window=False): """Apply time window to signal. This function uses the windows implemented in :py:mod:`scipy.signal.windows`. Parameters ---------- signal : Signal Signal object to be windowed. interval : array_like If `interval` has two entries, these specify the beginning and the end of the symmetric window or the fade-in / fade-out (see parameter `shape`). If `interval` has four entries, a window with fade-in between the first two entries and a fade-out between the last two is created, while it is constant in between (ignores `shape`). The unit of `interval` is specified by the parameter `unit`. See below for more details. window : string, float, or tuple, optional The type of the window. See below for a list of implemented windows. The default is ``'hann'``. shape : string, optional ``'symmetric'`` General symmetric window, the two values in `interval` define the first and last samples of the window. ``'symmetric_zero'`` Symmetric window with respect to t=0, the two values in `interval` define the first and last samples of fade-out. `crop` is ignored. ``'left'`` Fade-in, the beginning and the end of the fade is defined by the two values in `interval`. See Notes for more details. ``'right'`` Fade-out, the beginning and the end of the fade is defined by the two values in `interval`. See Notes for more details. The default is ``'symmetric'``. unit : string, optional Unit of `interval`. Can be set to ``'samples'`` or ``'s'`` (seconds). Time values are rounded to the nearest sample. The default is ``'samples'``. crop : string, optional ``'none'`` The length of the windowed signal stays the same. ``'window'`` The signal is truncated to the windowed part. ``'end'`` Only the zeros at the end of the windowed signal are cropped, so the original phase is preserved. The default is ``'none'``. return_window: bool, optional If ``True``, both the windowed signal and the time window are returned. The default is ``False``. Returns ------- signal_windowed : Signal Windowed signal object window : Signal Time window used to create the windowed signal, only returned if ``return_window=True``. Notes ----- For a fade-in, the indexes of the samples given in `interval` denote the first sample of the window which is non-zero and the first which is one. For a fade-out, the samples given in `interval` denote the last sample which is one and the last which is non-zero. This function calls :py:func:`scipy.signal.windows.get_window` to create the window. Available window types: - ``boxcar`` - ``triang`` - ``blackman`` - ``hamming`` - ``hann`` - ``bartlett`` - ``flattop`` - ``parzen`` - ``bohman`` - ``blackmanharris`` - ``nuttall`` - ``barthann`` - ``kaiser`` (needs beta, see :py:func:`~pyfar.dsp.kaiser_window_beta`) - ``gaussian`` (needs standard deviation) - ``general_gaussian`` (needs power, width) - ``dpss`` (needs normalized half-bandwidth) - ``chebwin`` (needs attenuation) - ``exponential`` (needs center, decay scale) - ``tukey`` (needs taper fraction) - ``taylor`` (needs number of constant sidelobes, sidelobe level) If the window requires no parameters, then `window` can be a string. If the window requires parameters, then `window` must be a tuple with the first argument the string name of the window, and the next arguments the needed parameters. Examples -------- Options for parameter `shape`. .. plot:: >>> import pyfar as pf >>> import numpy as np >>> signal = pf.Signal(np.ones(100), 44100) >>> for shape in ['symmetric', 'symmetric_zero', 'left', 'right']: >>> signal_windowed = pf.dsp.time_window( ... signal, interval=[25,45], shape=shape) >>> ax = pf.plot.time(signal_windowed, label=shape, unit='ms') >>> ax.legend(loc='right') Window with fade-in and fade-out defined by four values in `interval`. .. plot:: >>> import pyfar as pf >>> import numpy as np >>> signal = pf.Signal(np.ones(100), 44100) >>> signal_windowed = pf.dsp.time_window( ... signal, interval=[25, 40, 60, 90], window='hann') >>> pf.plot.time(signal_windowed, unit='ms') """ # Check input if not isinstance(signal, pyfar.Signal): raise TypeError("The parameter signal has to be of type: Signal.") if shape not in ('symmetric', 'symmetric_zero', 'left', 'right'): raise ValueError( "The parameter shape has to be 'symmetric', 'symmetric_zero' " "'left' or 'right'.") if crop not in ('window', 'end', 'none'): raise TypeError( "The parameter crop has to be 'none', 'window' or 'end'.") if not isinstance(interval, (list, tuple)): raise TypeError( "The parameter interval has to be of type list, tuple or None.") if not isinstance(return_window, bool): raise TypeError( "The parameter return_window needs to be boolean.") interval = np.array(interval) if not np.array_equal(interval, np.sort(interval)): raise ValueError("Values in interval need to be in ascending order.") # Convert to samples if unit == 's': interval = np.round(interval*signal.sampling_rate).astype(int) elif unit == 'samples': interval = interval.astype(int) else: raise ValueError(f"unit is {unit} but has to be 'samples' or 's'.") # Check window size if interval[-1] > signal.n_samples: raise ValueError( "Values in interval require window to be longer than signal.") # Create window # win_start and win_stop define the first and last sample of the window if len(interval) == 2: if shape == 'symmetric': win, win_start, win_stop = _time_window_symmetric_interval_two( interval, window) elif shape == 'symmetric_zero': win, win_start, win_stop = _time_window_symmetric_zero( signal.n_samples, interval, window) elif shape == 'left': win, win_start, win_stop = _time_window_left( signal.n_samples, interval, window) elif shape == 'right': win, win_start, win_stop = _time_window_right( interval, window) elif len(interval) == 4: win, win_start, win_stop = _time_window_symmetric_interval_four( interval, window) else: raise ValueError( "interval needs to contain two or four values.") # Apply window signal_win = signal.copy() if crop == 'window': signal_win.time = signal_win.time[..., win_start:win_stop+1]*win if return_window: window_fin = pyfar.Signal(win, signal_win.sampling_rate) if crop == 'end': # Add zeros before window window_zeropadded = np.zeros(win_stop+1) window_zeropadded[win_start:win_stop+1] = win signal_win.time = signal_win.time[..., :win_stop+1]*window_zeropadded if return_window: window_fin = pyfar.Signal( window_zeropadded, signal_win.sampling_rate) elif crop == 'none': # Create zeropadded window window_zeropadded = np.zeros(signal.n_samples) window_zeropadded[win_start:win_stop+1] = win signal_win.time = signal_win.time*window_zeropadded if return_window: window_fin = pyfar.Signal( window_zeropadded, signal_win.sampling_rate) if return_window: interval_str = str(tuple(interval)) if 'np' in interval_str: interval_str = f"({', '.join([str(i) for i in interval])})" window_fin.comment = ( f"Time window with parameters interval={interval_str}, " f"window='{window}', shape='{shape}', unit='{unit}', " f"crop='{crop}'") return signal_win, window_fin else: return signal_win
[docs] def kaiser_window_beta(A): """Return a shape parameter beta to create kaiser window based on desired side lobe suppression in dB. This function can be used to call :py:func:`~pyfar.dsp.time_window` with ``window=('kaiser', beta)``. Parameters ---------- A : float Side lobe suppression in dB Returns ------- beta : float Shape parameter beta after [#]_, Eq. 7.75 References ---------- .. [#] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, Third edition, Upper Saddle, Pearson, 2010. """ A = np.abs(A) if A > 50: beta = 0.1102 * (A - 8.7) elif A >= 21: beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21) else: beta = 0.0 return beta
def _time_window_symmetric_interval_two(interval, window): """Symmetric time window between 2 values given in interval. Parameters ---------- interval : array_like Boundaries of the window window : string Window type, see :py:func:`~pyfar.dsp.time_window` Returns ------- win : numpy array Time window win_start : int Index of first sample of window win_stop : int Index of last sample of window """ win_samples = interval[1]-interval[0]+1 win = sgn.windows.get_window(window, win_samples, fftbins=False) win_start = interval[0] win_stop = interval[1] return win, win_start, win_stop def _time_window_left(n_samples, interval, window): """Left-sided time window. Parameters ---------- n_samples : int Number of samples of signal to be windowed interval : array_like First and last sample of fade-in window : string Window type, see :py:func:`~pyfar.dsp.time_window` Returns ------- win : numpy array Time window win_start : int Index of first sample of window win_stop : int Index of last sample of window """ fade_samples = int(2*(interval[1]-interval[0])) fade = sgn.windows.get_window(window, fade_samples, fftbins=False) win = np.ones(n_samples-interval[0]) win[0:interval[1]-interval[0]] = fade[:int(fade_samples/2)] win_start = interval[0] win_stop = n_samples-1 return win, win_start, win_stop def _time_window_right(interval, window): """Right-sided time window. Parameters ---------- interval : array_like First and last sample of fade-out window : string Window type, see :py:func:`~pyfar.dsp.time_window` Returns ------- win : numpy array Time window win_start : int Index of first sample of window win_stop : int Index of last sample of window """ fade_samples = int(2*(interval[1]-interval[0])) fade = sgn.windows.get_window(window, fade_samples, fftbins=False) win = np.ones(interval[1]+1) win[interval[0]+1:] = fade[int(fade_samples/2):] win_start = 0 win_stop = interval[1] return win, win_start, win_stop def _time_window_symmetric_zero(n_samples, interval, window): """Symmetric time window with respect to t=0. Parameters ---------- n_samples : int Number of samples of signal to be windowed interval : array_like First and last sample of fade-out. window : string Window type, see :py:func:`~pyfar.dsp.time_window` Returns ------- win : numpy array Time window win_start : int Index of first sample of window win_stop : int Index of last sample of window """ fade_samples = int(2*(interval[1]-interval[0])) fade = sgn.windows.get_window(window, fade_samples, fftbins=False) win = np.zeros(n_samples) win[:interval[0]+1] = 1 win[interval[0]+1:interval[1]+1] = fade[int(fade_samples/2):] win[-interval[0]:] = 1 win[-interval[1]:-interval[0]] = fade[:int(fade_samples/2)] win_start = 0 win_stop = n_samples return win, win_start, win_stop def _time_window_symmetric_interval_four(interval, window): """Symmetric time window with two fades and constant range in between. Parameters ---------- interval : array_like Indexes of fade-in and fade-out window : string Window type, see :py:func:`~pyfar.dsp.time_window` Returns ------- win : numpy array Time window win_start : int Index of first sample of window win_stop : int Index of last sample of window """ fade_in_samples = int(2*(interval[1]-interval[0])) fade_in = sgn.windows.get_window( window, fade_in_samples, fftbins=False) fade_in = fade_in[:int(fade_in_samples/2)] fade_out_samples = int(2*(interval[3]-interval[2])) fade_out = sgn.windows.get_window( window, fade_out_samples, fftbins=False) fade_out = fade_out[int(fade_out_samples/2):] win = np.ones(interval[-1]-interval[0]+1) win[0:interval[1]-interval[0]] = fade_in win[interval[2]-interval[0]+1:interval[3]-interval[0]+1] = fade_out win_start = interval[0] win_stop = interval[3] return win, win_start, win_stop
[docs] @rename_arg({"freq_range": "frequency_range"}, "freq_range parameter will be deprecated in pyfar 0.8.0 in " "favor of frequency_range") def regularized_spectrum_inversion( signal, frequency_range, regu_outside=1., regu_inside=10**(-200/20), regu_final=None, normalized=True): r"""Invert the spectrum of a signal applying frequency dependent regularization. Regularization can either be specified within a given frequency range using two different regularization factors, or for each frequency individually using the parameter `regu_final`. In the first case the regularization factors for the frequency regions are cross-faded using a raised cosine window function with a width of :math:`\sqrt{2}f` above and below the given frequency range. Note that the resulting regularization function is adjusted to the quadratic maximum of the given signal. In case the `regu_final` parameter is used, all remaining options are ignored and an array matching the number of frequency bins of the signal needs to be given. In this case, no normalization of the regularization function is applied. Finally, the inverse spectrum is calculated as [#]_, [#]_, .. math:: S^{-1}(f) = \frac{S^*(f)}{S^*(f)S(f) + \epsilon(f)} Parameters ---------- signal : Signal The signals which spectra are to be inverted. frequency_range : tuple, array_like, double The upper and lower frequency limits outside of which the regularization factor is to be applied. regu_outside : float, optional The normalized regularization factor outside the frequency range. The default is ``1``. regu_inside : float, optional The normalized regularization factor inside the frequency range. The default is ``10**(-200/20)`` (-200 dB). regu_final : float, array_like, optional The final regularization factor for each frequency, default ``None``. If this parameter is set, the remaining regularization factors are ignored. normalized : bool Flag to indicate if the normalized spectrum (according to `signal.fft_norm`) should be inverted. The default is ``True``. freq_range: tuple, array_like, double The upper and lower frequency limits outside of which the regularization factor is to be applied. ``'freq_range'`` parameter will be deprecated in pyfar 0.8.0 in favor of ``'frequency_range'``. Returns ------- Signal The resulting signal after inversion. References ---------- .. [#] O. Kirkeby and P. A. Nelson, “Digital Filter Design for Inversion Problems in Sound Reproduction,” J. Audio Eng. Soc., vol. 47, no. 7, p. 13, 1999. .. [#] P. C. Hansen, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. Philadelphia: SIAM, 1998. """ if not isinstance(signal, pyfar.Signal): raise ValueError("The input signal needs to be of type pyfar.Signal.") if not isinstance(normalized, bool): raise TypeError("The normalized parameter needs to be boolean") if normalized: data = signal.freq else: data = signal.freq_raw frequency_range = np.asarray(frequency_range) if frequency_range.size < 2: raise ValueError( "The frequency range needs to specify lower and upper limits.") if regu_final is None: regu_inside = np.ones(signal.n_bins, dtype=np.double) * regu_inside regu_outside = np.ones(signal.n_bins, dtype=np.double) * regu_outside idx_xfade_lower = signal.find_nearest_frequency( [frequency_range[0]/np.sqrt(2), frequency_range[0]]) regu_final = _cross_fade(regu_outside, regu_inside, idx_xfade_lower) if frequency_range[1] < signal.sampling_rate/2: idx_xfade_upper = signal.find_nearest_frequency([ frequency_range[1], np.min([frequency_range[1]*np.sqrt(2), signal.sampling_rate/2])]) regu_final = _cross_fade(regu_final, regu_outside, idx_xfade_upper) regu_final *= np.max(np.abs(data)**2) inverse = signal.copy() inverse.freq = np.conj(data) / (np.conj(data)*data + regu_final) return inverse
def _cross_fade(first, second, indices): """Cross-fade two numpy arrays by multiplication with a raised cosine window inside the range specified by the indices. Outside the range, the result will be the respective first or second array, without distortions. Parameters ---------- first : array, double The first array. second : array, double The second array. indices : array-like, tuple, int The lower and upper cross-fade indices. Returns ------- result : array, double The resulting array after cross-fading. """ indices = np.asarray(indices) if np.shape(first)[-1] != np.shape(second)[-1]: raise ValueError("Both arrays need to be of same length.") len_arrays = np.shape(first)[-1] if np.any(indices > np.shape(first)[-1]): raise IndexError("Index is out of range.") len_xfade = np.squeeze(np.abs(np.diff(indices))) window = sgn.windows.hann(len_xfade*2 + 1, sym=True) window_rising = window[:len_xfade] window_falling = window[len_xfade+1:] window_first = np.concatenate( (np.ones(indices[0]), window_falling, np.zeros(len_arrays-indices[1]))) window_second = np.concatenate( (np.zeros(indices[0]), window_rising, np.ones(len_arrays-indices[1]))) result = first * window_first + second * window_second return result
[docs] def minimum_phase(signal, n_fft=None, truncate=True): """ Calculate the minimum phase equivalent of a finite impulse response. The method is based on the Hilbert transform of the real-valued cepstrum of the finite impulse response, that is the cepstrum of the magnitude spectrum only. As a result the magnitude spectrum is not distorted. Potential aliasing errors can occur due to the Fourier transform based calculation of the magnitude spectrum, which however are negligible if the length of Fourier transform ``n_fft`` is sufficiently high. [#]_ (Section 8.5.4) Parameters ---------- signal : Signal The finite impulse response for which the minimum-phase version is computed. n_fft : int, optional The FFT length used for calculating the cepstrum. Should be at least a few times larger than ``signal.n_samples``. The default ``None`` uses eight times the signal length rounded up to the next power of two, that is: ``2**int(np.ceil(np.log2(n_samples * 8)))``. truncate : bool, optional If ``truncate`` is ``True``, the resulting minimum phase impulse response is truncated to a length of ``signal.n_samples//2 + signal.n_samples % 2``. This avoids aliasing described above in any case but might distort the magnitude response if ``signal.n_samples`` is to low. If truncate is ``False`` the output signal has the same length as the input signal. The default is ``True``. Returns ------- signal_minphase : Signal The minimum phase version of the input data. References ---------- .. [#] J. S. Lim and A. V. Oppenheim, Advanced topics in signal processing, pp. 472-473, First Edition. Prentice Hall, 1988. Examples -------- Create a minimum phase equivalent of a linear phase FIR low-pass filter .. plot:: >>> import pyfar as pf >>> import numpy as np >>> from scipy.signal import remez >>> import matplotlib.pyplot as plt >>> freq = [0, 0.2, 0.3, 1.0] >>> h_linear = pf.Signal(remez(151, freq, [1, 0], fs=2.), 44100) >>> # create minimum phase impulse responses >>> h_min = pf.dsp.minimum_phase(h_linear, truncate=False) >>> # plot the result >>> pf.plot.use() >>> fig, axs = plt.subplots(3, figsize=(8, 6)) >>> pf.plot.time(h_linear, ax=axs[0], unit='ms') >>> pf.plot.time(h_min, ax=axs[0], unit='ms') >>> axs[0].grid(True) >>> pf.plot.freq(h_linear, ax=axs[1]) >>> pf.plot.group_delay(h_linear, ax=axs[2], unit="ms") >>> pf.plot.freq(h_min, ax=axs[1]) >>> pf.plot.group_delay(h_min, ax=axs[2], unit="ms") >>> axs[2].legend(['Linear', 'Minimum'], loc=3, ncol=2) >>> axs[2].set_ylim(-2.5, 2.5) """ from scipy.fft import fft, ifft workers = multiprocessing.cpu_count() # center the energy by taking the linear phase signal (using n_samples//2 # performs better than using n_samples/2) signal = pyfar.dsp.linear_phase( signal, signal.n_samples // 2, unit='samples') if n_fft is None: n_fft = 2**int(np.ceil(np.log2(signal.n_samples * 8))) elif n_fft < signal.n_samples: raise ValueError(( f"n_fft is {n_fft} but must be at least {signal.n_samples}, " "which is the length of the input signal")) # add eps to the magnitude spectrum to avoid nans in log H = np.abs(fft(signal.time, n=n_fft, workers=workers, axis=-1)) H[H == 0] = np.finfo(float).eps # calculate the minimum phase using the Hilbert transform phase = -np.imag(sgn.hilbert(np.log(H), N=n_fft, axis=-1)) data = ifft(H*np.exp(1j*phase), axis=-1, workers=workers).real # cut to length if truncate: N = signal.n_samples // 2 + signal.n_samples % 2 data = data[..., :N] else: data = data[..., :signal.n_samples] return pyfar.Signal(data, signal.sampling_rate)
[docs] def pad_zeros(signal, pad_width, mode='end'): """Pad a signal with zeros in the time domain. Parameters ---------- signal : Signal The signal which is to be extended. pad_width : int The number of samples to be padded. mode : str, optional The padding mode: ``'end'`` Append zeros to the end of the signal ``'beginning'`` Prepend zeros to the beginning of the signal ``'center'`` Insert the number of zeros in the middle of the signal. This mode can be used to pad signals with a symmetry with respect to the time ``t=0``. The default is ``'end'``. Returns ------- Signal The zero-padded signal. Examples -------- >>> import pyfar as pf >>> impulse = pf.signals.impulse(512, amplitude=1) >>> impulse_padded = pf.dsp.pad_zeros(impulse, 128, mode='end') """ if not isinstance(signal, pyfar.Signal): raise TypeError('Input data has to be of type: Signal.') if mode in ['before', 'after']: warnings.warn(('Mode "before" and "after" will be renamed into ' '"beginning" and "end" and can no longer be used in ' 'Pyfar 0.8.0.'), PyfarDeprecationWarning, stacklevel=2) mode = 'beginning' if mode == 'before' else 'end' padded_signal = signal.flatten() if mode in ['end', 'center']: pad_array = ((0, 0), (0, pad_width)) elif mode == 'beginning': pad_array = ((0, 0), (pad_width, 0)) else: raise ValueError("Unknown padding mode.") if mode == 'center': shift_samples = int(np.round(signal.n_samples/2)) padded_signal.time = np.roll( padded_signal.time, shift_samples, axis=-1) padded_signal.time = np.pad( padded_signal.time, pad_array, mode='constant') if mode == 'center': padded_signal.time = np.roll( padded_signal.time, -shift_samples, axis=-1) padded_signal = padded_signal.reshape(signal.cshape) return padded_signal
[docs] def time_shift( signal, shift, mode='cyclic', unit='samples', pad_value=0.): """Apply a cyclic or linear time-shift to a signal. This function only allows integer value sample shifts. If unit ``'time'`` is used, the shift samples will be rounded to the nearest integer value. For a shift using fractional sample values see :py:func:`~pf.dsp.fractional_time_shift`. Parameters ---------- signal : Signal The signal to be shifted shift : int, float, array_like The time-shift value. A positive value will result in right shift on the time axis (delaying of the signal), whereas a negative value yields a left shift on the time axis (non-causal shift to a earlier time). If a single value is given, the same time shift will be applied to each channel of the signal. Individual time shifts for each channel can be performed by passing an array broadcastable to the signals channel dimensions :py:func:`~pyfar.Signal.cshape`. mode : str, optional The shifting mode ``"linear"`` Apply linear shift, i.e., parts of the signal that are shifted to times smaller than 0 samples and larger than ``signal.n_samples`` disappear. To maintain the shape of the signal, the signal is padded at the respective other end. The pad value is determined by ``pad_type``. ``"cyclic"`` Apply a cyclic shift, i.e., parts of the signal that are shifted to values smaller than 0 are wrapped around to the end, and parts that are shifted to values larger than ``signal.n_samples`` are wrapped around to the beginning. The default is ``"cyclic"`` unit : str, optional Unit of the shift variable, this can be either ``'samples'`` or ``'s'`` for seconds. By default ``'samples'`` is used. Note that in the case of specifying the shift time in seconds, the value is rounded to the next integer sample value to perform the shift. pad_value : numeric, optional The pad value for linear shifts, by default ``0.`` is used. Pad :py:data:`numpy.nan` to the respective channels if the rms value of the signal is to be maintained for block-wise rms estimation of the noise power of a signal. Note that if NaNs are padded, the returned data will be a :py:class:`~pyfar.TimeData` instead of :py:class:`~pyfar.Signal` object. Returns ------- Signal, TimeData The time-shifted signal. This is a :py:class:`~pyfar.TimeData` object in case a linear shift was done and the signal was padded with Nans. In all other cases, a :py:class:`~pyfar.Signal` object is returned. Examples -------- Individually do a cyclic shift of a set of ideal impulses stored in three different channels and plot the resulting signals .. plot:: >>> import pyfar as pf >>> import matplotlib.pyplot as plt >>> # generate and shift the impulses >>> impulse = pf.signals.impulse( ... 32, amplitude=(1, 1.5, 1), delay=(14, 15, 16)) >>> shifted = pf.dsp.time_shift(impulse, [-2, 0, 2]) >>> # time domain plot >>> pf.plot.use('light') >>> _, axs = plt.subplots(2, 1) >>> pf.plot.time(impulse, ax=axs[0], unit='samples') >>> pf.plot.time(shifted, ax=axs[1], unit='samples') >>> axs[0].set_title('Original signals') >>> axs[1].set_title('Shifted signals') Perform a linear time shift instead and pad with NaNs .. plot:: >>> import pyfar as pf >>> import numpy as np >>> import matplotlib.pyplot as plt >>> # generate and shift the impulses >>> impulse = pf.signals.impulse( ... 32, amplitude=(1, 1.5, 1), delay=(14, 15, 16)) >>> shifted = pf.dsp.time_shift( ... impulse, [-2, 0, 2], mode='linear', pad_value=np.nan) >>> # time domain plot >>> pf.plot.use('light') >>> _, axs = plt.subplots(2, 1) >>> pf.plot.time(impulse, ax=axs[0], unit='samples') >>> pf.plot.time(shifted, ax=axs[1], unit='samples') >>> axs[0].set_title('Original signals') >>> axs[1].set_title('Shifted signals') """ if mode not in ["linear", "cyclic"]: raise ValueError(f"mode is '{mode}' but mist be 'linear' or cyclic'") shift = np.broadcast_to(shift, signal.cshape) if unit == 's': shift_samples = np.round(shift*signal.sampling_rate).astype(int) elif unit == 'samples': shift_samples = shift.astype(int) else: raise ValueError( f"unit is '{unit}' but must be 'samples' or 's'.") if np.any(np.abs(shift_samples) > signal.n_samples) and mode == "linear": raise ValueError(("Can not shift by more samples than signal.n_samples" " if mode is 'linear'")) shifted = signal.copy() for ch in np.ndindex(signal.cshape): shifted.time[ch] = np.roll( shifted.time[ch], shift_samples[ch], axis=-1) if mode == 'linear': if shift_samples[ch] > 0: samples = slice(0, shift_samples[ch]) shifted.time[ch + (samples, )] = pad_value elif shift_samples[ch] < 0: samples = slice(shifted.n_samples + shift_samples[ch], shifted.n_samples) shifted.time[ch + (samples, )] = pad_value if np.any(np.isnan(shifted.time)): shifted = pyfar.TimeData( shifted.time, shifted.times, comment=shifted.comment, is_complex=signal.complex) return shifted
[docs] def find_impulse_response_delay(impulse_response, N=1): """Find the delay in sub-sample values of an impulse response. The method relies on the analytic part of the cross-correlation function of the impulse response and it's minimum-phase equivalent, which is zero for the maximum of the correlation function. For sub-sample root finding, the analytic signal is approximated using a polynomial of order ``N``. The algorithm is based on [#]_ with the following modifications: 1. Values with negative gradient used for polynomial fitting are rejected, allowing to use larger part of the signal for fitting. 2. By default a first order polynomial is used, as the slope of the analytic signal should in theory be linear. Alternatively see :py:func:`pyfar.dsp.find_impulse_response_start`. For complex-valued time signals, the delay is calculated separately for the real and complex part, and its minimum value returned. Parameters ---------- impulse_response : Signal The impulse response. N : int, optional The order of the polynom used for root finding, by default 1. Returns ------- delay : numpy.ndarray, float Delay of the impulse response, as an array of shape :py:func:`~pyfar.Signal.cshape`. Can be floating point values in the case of sub-sample values. References ---------- .. [#] N. S. M. Tamim and F. Ghani, “Hilbert transform of FFT pruned cross correlation function for optimization in time delay estimation,” in Communications (MICC), 2009 IEEE 9th Malaysia International Conference on, 2009, pp. 809-814. Examples -------- Create a band-limited impulse shifted by 0.5 samples and estimate the starting sample of the impulse and plot. .. plot:: >>> import pyfar as pf >>> import numpy as np >>> n_samples = 64 >>> delay_samples = n_samples // 2 + 1/2 >>> ir = pf.signals.impulse(n_samples) >>> ir = pf.dsp.linear_phase(ir, delay_samples, unit='samples') >>> start_samples = pf.dsp.find_impulse_response_delay(ir) >>> ax = pf.plot.time(ir, unit='ms', label='impulse response') >>> ax.axvline( ... start_samples/ir.sampling_rate*1e3, ... color='k', linestyle='-.', label='start sample') >>> ax.legend() """ n = int(np.ceil((N+2)/2)) start_samples = np.zeros(impulse_response.cshape) modes = ['real', 'complex'] if impulse_response.complex else ['real'] start_sample = np.zeros((len(modes), 1), dtype=float) for ch in np.ndindex(impulse_response.cshape): # Calculate the correlation between the impulse response and its # minimum phase equivalent. This requires a minimum phase equivalent # in the strict sense, instead of the appriximation implemented in # pyfar. n_samples = impulse_response.n_samples for idx, mode in enumerate(modes): ir = impulse_response.time[ch] ir = np.real(ir) if mode == 'real' else np.imag(ir) if np.max(ir) > 1e-16: # minimum phase warns if the input signal is not symmetric, # which is not critical for this application with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="h does not appear to by symmetric", category=RuntimeWarning) ir_minphase = sgn.minimum_phase( ir, n_fft=4*n_samples) correlation = sgn.correlate( ir, np.pad(ir_minphase, (0, n_samples - (n_samples + 1)//2)), mode='full') lags = np.arange(-n_samples + 1, n_samples) # calculate the analytic signal of the correlation function correlation_analytic = sgn.hilbert(correlation) # find the maximum of the analytic part of the correlation # function and define the search range around the maximum argmax = np.argmax(np.abs(correlation_analytic)) search_region_range = np.arange(argmax-n, argmax+n) search_region = np.imag( correlation_analytic[search_region_range]) # mask values with a negative gradient mask = np.gradient(search_region, search_region_range) > 0 # fit a polygon and estimate its roots search_region_poly = np.polyfit( search_region_range[mask]-argmax, search_region[mask], N) roots = np.roots(search_region_poly) # Use only real-valued roots if np.all(np.isreal(roots)): root = roots[np.abs(roots) == np.min(np.abs(roots))] start_sample[idx] = np.squeeze(lags[argmax] + root) else: start_sample[idx] = np.nan warnings.warn('Starting sample not found for channel ' f'{ch}', stacklevel=2) else: start_sample[idx] = np.nan start_samples[ch] = np.nanmin(start_sample) return start_samples
[docs] def find_impulse_response_start( impulse_response, threshold=20): """Find the start sample of an impulse response. The start sample is identified as the first sample which is below the ``threshold`` level relative to the maximum level of the impulse response. For room impulse responses, ISO 3382 [#]_ specifies a threshold of 20 dB. This function is primary intended to be used when processing room impulse responses. For complex-valued time signals the onset is computed separately for the real and imaginary part. Alternatively see :py:func:`pyfar.dsp.find_impulse_response_delay`. Parameters ---------- impulse_response : pyfar.Signal The impulse response threshold : float, optional The threshold level in dB, by default 20, which complies with ISO 3382. Returns ------- start_sample : numpy.ndarray, int Sample at which the impulse response starts Notes ----- The function tries to estimate the PSNR in the IR based on the signal power in the last 10 percent of the IR. The automatic estimation may fail if the noise spectrum is not white or the impulse response contains non-linear distortions. If the PSNR is lower than the specified threshold, the function will issue a warning. References ---------- .. [#] ISO 3382-1:2009-10, Acoustics - Measurement of the reverberation time of rooms with reference to other acoustical parameters. pp. 22 Examples -------- Create a band-limited impulse shifted by 0.5 samples and estimate the starting sample of the impulse and plot. .. plot:: >>> import pyfar as pf >>> import numpy as np >>> n_samples = 256 >>> delay_samples = n_samples // 2 + 1/2 >>> ir = pf.signals.impulse(n_samples) >>> ir = pf.dsp.linear_phase(ir, delay_samples, unit='samples') >>> start_samples = pf.dsp.find_impulse_response_start(ir) >>> ax = pf.plot.time(ir, unit='ms', label='impulse response', dB=True) >>> ax.axvline( ... start_samples/ir.sampling_rate*1e3, ... color='k', linestyle='-.', label='start sample') >>> ax.axhline( ... 20*np.log10(np.max(np.abs(ir.time)))-20, ... color='k', linestyle=':', label='threshold') >>> ax.legend() Create a train of weighted impulses with levels below and above the threshold, serving as a very abstract room impulse response. The starting sample is identified as the last sample below the threshold relative to the maximum of the impulse response. .. plot:: >>> import pyfar as pf >>> import numpy as np >>> n_samples = 64 >>> delays = np.array([14, 22, 26, 30, 33]) >>> amplitudes = np.array([-35, -22, -6, 0, -9], dtype=float) >>> ir = pf.signals.impulse(n_samples, delays, 10**(amplitudes/20)) >>> ir.time = np.sum(ir.time, axis=0) >>> start_sample_est = pf.dsp.find_impulse_response_start( ... ir, threshold=20) >>> ax = pf.plot.time( ... ir, dB=True, unit='samples', ... label=f'peak samples: {delays}') >>> ax.axvline( ... start_sample_est, linestyle='-.', color='k', ... label=f'ir start sample: {start_sample_est}') >>> ax.axhline( ... 20*np.log10(np.max(np.abs(ir.time)))-20, ... color='k', linestyle=':', label='threshold') >>> ax.legend() """ modes = ['real', 'complex'] if impulse_response.complex else ['real'] ir_start = np.zeros(((len(modes), ) + impulse_response.cshape)) for idx, mode in enumerate(modes): ir = impulse_response.time ir_squared = np.real(ir)**2 if mode == 'real' else np.imag(ir)**2 mask_start = int(0.9*impulse_response.n_samples) mask = np.arange(mask_start, ir_squared.shape[-1]) noise = np.mean(np.take(ir_squared, mask, axis=-1), axis=-1) max_sample = np.argmax(ir_squared, axis=-1) max_value = np.max(ir_squared, axis=-1) if np.any(max_value < 10**(threshold/10) * noise) or \ np.any(max_sample > mask_start): warnings.warn( "The SNR seems lower than the specified threshold value. " "Check if this is a valid impulse response with sufficient " "SNR.", stacklevel=2) start_sample = max_sample.copy() for ch in np.ndindex(impulse_response.cshape): # Only look for the start sample if the maximum index is bigger # than 0 if start_sample[ch] > 0: # Check samples before maximum ir_before_max = np.squeeze( ir_squared[ch][:max_sample[ch]+1] / max_value[ch]) # First sample above or at the threshold level idx_first_above_thresh = np.where( ir_before_max >= 10**(-threshold/10))[0] if idx_first_above_thresh.size > 0: # The start sample is the last sample below the threshold start_sample[ch] = np.min(idx_first_above_thresh) - 1 else: start_sample[ch] = 0 warnings.warn( 'No values below threshold found found for channel ' f'{ch} defaulting to 0', stacklevel=2) ir_start[idx] = start_sample # squeeze first dimeension is signal is not complex if not impulse_response.complex: ir_start = np.squeeze(ir_start, axis=0) return ir_start
[docs] @rename_arg({"freq_range": "frequency_range"}, "freq_range parameter will be deprecated in pyfar 0.8.0 in " "favor of frequency_range") def deconvolve(system_output, system_input, fft_length=None, frequency_range=None, **kwargs): r"""Calculate transfer functions by spectral deconvolution of two signals. The transfer function :math:`H(\omega)` is calculated by spectral deconvolution (spectral division). .. math:: H(\omega) = \frac{Y(\omega)}{X(\omega)}, where :math:`X(\omega)` is the system input signal and :math:`Y(\omega)` the system output. Regularized inversion is used to avoid numerical issues in calculating :math:`X(\omega)^{-1} = 1/X(\omega)` for small values of :math:`X(\omega)` (see :py:func:`~pyfar.dsp.regularized_spectrum_inversion`). The system response (transfer function) is thus calculated as .. math:: H(\omega) = Y(\omega)X(\omega)^{-1}. For more information, refer to [#]_. Parameters ---------- system_output : Signal The system output signal (e.g., recorded after passing a device under test). The system output signal is zero padded, if it is shorter than the system input signal. system_input : Signal The system input signal (e.g., used to perform a measurement). The system input signal is zero padded, if it is shorter than the system output signal. frequency_range : tuple, array_like, double The upper and lower frequency limits outside of which the regularization factor is to be applied. The default ``None`` bypasses the regularization, which might cause numerical instabilities in case of band-limited `system_input`. Also see :py:func:`~pyfar.dsp.regularized_spectrum_inversion`. fft_length : int or None The length the signals system_output and system_input are zero padded to before deconvolving. The default is None. In this case only the shorter signal is padded to the length of the longer signal, no padding is applied when both signals have the same length. kwargs : key value arguments Key value arguments to control the inversion of :math:`H(\omega)` are passed to to :py:func:`~pyfar.dsp.regularized_spectrum_inversion`. freq_range: tuple, array_like, double The upper and lower frequency limits outside of which the regularization factor is to be applied. The default ``None`` bypasses the regularization, which might cause numerical instabilities in case of band-limited `system_input`. Also see :py:func:`~pyfar.dsp.regularized_spectrum_inversion`. ``'freq_range'`` parameter will be deprecated in pyfar 0.8.0 in favor of ``'frequency_range'``. Returns ------- system_response : Signal The resulting signal after deconvolution, representing the system response (the transfer function). The ``fft_norm`` of is set to ``'none'``. References ---------- .. [#] S. Mueller and P. Masserani "Transfer function measurement with sweeps. Directors cut." J. Audio Eng. Soc. 49(6):443-471, (2001, June). """ # Check if system_output and system_input are both type Signal if not isinstance(system_output, pyfar.Signal): raise TypeError('system_output has to be of type pyfar.Signal') if not isinstance(system_input, pyfar.Signal): raise TypeError('system_input has to be of type pyfar.Signal') # Check if both signals have the same sampling rate if not system_output.sampling_rate == system_input.sampling_rate: raise ValueError("The two signals have different sampling rates!") if frequency_range is None: frequency_range = (0, system_input.sampling_rate/2) # Set fft_length to the max n_samples of both signals, # if it is not explicitly set to a value if fft_length is None: fft_length = np.max([system_output.n_samples, system_input.n_samples]) # Check if both signals length are shorter or the same as fft_length if fft_length < system_output.n_samples: raise ValueError("The fft_length can not be shorter than" + "system_output.n_samples.") if fft_length < system_input.n_samples: raise ValueError("The fft_length can not be shorter than" + "system_input.n_samples.") # Check if both signals have the same length as ftt_length, # if not: bring them to the same length by padding with zeros system_output = pyfar.dsp.pad_zeros(system_output, (fft_length - system_output.n_samples)) system_input = pyfar.dsp.pad_zeros(system_input, (fft_length - system_input.n_samples)) # multiply system_output signal with regularized inversed system_input # signal to get the system response inverse_input = regularized_spectrum_inversion( system_input, frequency_range, **kwargs) system_response = system_output * inverse_input # Check if the signals have any comments, # if yes: concatenate the comments for the system_response system_response.comment = "Calculated with pyfar.dsp.deconvolve." if system_output.comment != '': system_response.comment += f" system input: {system_output.comment}." if system_input.comment != '': system_response.comment += f" system output: {system_input.comment}." # return the impulse resonse system_response.fft_norm = pyfar.classes.audio._match_fft_norm( system_output.fft_norm, system_input.fft_norm, division=True) return system_response
[docs] def convolve(signal1, signal2, mode='full', method='overlap_add'): """Convolve two signals. Parameters ---------- signal1 : Signal The first signal signal2 : Signal The second signal. The channel shape (`cshape`) of this signal must be `broadcastable <https://numpy.org/doc/stable/user/basics.broadcasting.html>`_ to the cshape of the first signal. The cshape gives the shape of the data inside an audio object but ignores the number of samples or frequency bins. mode : string, optional A string indicating the size of the output: ``'full'`` Compute the full discrete linear convolution of the input signals. The output has the length ``'signal1.n_samples + signal2.n_samples - 1'`` (Default). ``'cut'`` Compute the complete convolution with ``full`` and truncate the result to the length of the longer signal. ``'cyclic'`` The output is the cyclic convolution of the signals, where the shorter signal is zero-padded to fit the length of the longer one. This is done by computing the complete convolution with ``'full'``, adding the tail (i.e., the part that is truncated for ``mode='cut'`` to the beginning of the result) and truncating the result to the length of the longer signal. method : str {'overlap_add', 'fft'}, optional A string indicating which method to use to calculate the convolution: ``'overlap_add'`` Convolve using the overlap-add algorithm based on :py:func:`scipy.signal.oaconvolve`.. (Default) ``'fft'`` Convolve using FFT based on :py:func:`scipy.signal.fftconvolve`. See Notes for more details. Returns ------- signal : Signal The result of the convolution. The channel dimension (`cdim`) matches the bigger cdim of the two input signals. The channel dimension gives the number of dimensions of the audio data excluding the last dimension, which is ``n_samples`` for time domain objects and ``n_bins`` for frequency domain objects. Notes ----- The overlap-add method is generally much faster than fft convolution when one signal is much larger than the other, but can be slower when only a few output values are needed or when the signals have a very similar length. For ``method='overlap_add'``, integer data will be cast to float. Examples -------- Illustrate the different modes. .. plot:: >>> import pyfar as pf >>> s1 = pf.Signal([1, 0.5, 0.5], 1000) >>> s2 = pf.Signal([1,-1], 1000) >>> full = pf.dsp.convolve(s1, s2, mode='full') >>> cut = pf.dsp.convolve(s1, s2, mode='cut') >>> cyc = pf.dsp.convolve(s1, s2, mode='cyclic') >>> # Plot input and output >>> with pf.plot.context(): >>> fig, ax = plt.subplots(2, 1, sharex=True) >>> pf.plot.time(s1, ax=ax[0], label='Signal 1', marker='o', ... unit='samples') >>> pf.plot.time(s2, ax=ax[0], label='Signal 2', marker='o', ... unit='samples') >>> ax[0].set_title('Input Signals') >>> ax[0].legend() >>> pf.plot.time(full, ax=ax[1], label='full', marker='o', ... unit='samples') >>> pf.plot.time(cut, ax=ax[1], label='cut', ls='--', marker='o', ... unit='samples') >>> pf.plot.time(cyc, ax=ax[1], label='cyclic', ls=':', marker='o', ... unit='samples') >>> ax[1].set_title('Convolution Result') >>> ax[1].set_ylim(-1.1, 1.1) >>> ax[1].legend() """ # check input if not signal1.sampling_rate == signal2.sampling_rate: raise ValueError("The sampling rates do not match") fft_norm = pyfar.classes.audio._match_fft_norm( signal1.fft_norm, signal2.fft_norm) if mode not in ['full', 'cut', 'cyclic']: raise ValueError( f"Invalid mode {mode}, needs to be " "'full', 'cut' or 'cyclic'.") # check cdims if len(signal1.cshape) != len(signal2.cshape): signal1, signal2 = pyfar.utils.broadcast_cdims((signal1, signal2)) # convolve if method == 'overlap_add': res = sgn.oaconvolve(signal1.time, signal2.time, mode='full', axes=-1) elif method == 'fft': res = sgn.fftconvolve(signal1.time, signal2.time, mode='full', axes=-1) else: raise ValueError( f"Invalid method {method}, needs to be 'overlap_add' or 'fft'.") # make convolution truncated or cyclic if mode == 'cut': res = res[..., :np.max((signal1.n_samples, signal2.n_samples))] elif mode == 'cyclic': n_min = np.min((signal1.n_samples, signal2.n_samples)) n_max = np.max((signal1.n_samples, signal2.n_samples)) res[..., :n_min-1] += res[..., -n_min+1:] res = res[..., :n_max] is_result_complex = True if res.dtype.kind == 'c' else False return pyfar.Signal( res, signal1.sampling_rate, domain='time', fft_norm=fft_norm, is_complex=is_result_complex)
[docs] def decibel(signal, domain='freq', log_prefix=None, log_reference=1, return_prefix=False): r"""Convert data of the selected signal domain into decibels (dB). The converted data is calculated by the base 10 logarithmic scale: ``data_in_dB = log_prefix * numpy.log10(data/log_reference)``. By using a logarithmic scale, the deciBel is able to compare quantities that may have vast ratios between them. As an example, the sound pressure in dB can be calculated as followed: .. math:: L_p = 20\log_{10}\biggl(\frac{p}{p_0}\biggr), where :math:`20` is the logarithmic prefix for sound field quantities and :math:`p_0` would be the reference for the sound pressure level. A list of commonly used reference values can be found in the 'log_reference' parameters section. Parameters ---------- signal : Signal, TimeData, FrequencyData The signal which is converted into decibel domain : str The domain, that is converted to decibels: ``'freq'`` Convert normalized frequency domain data. Signal must be of type 'Signal' or 'FrequencyData'. ``'time'`` Convert time domain data. Signal must be of type 'Signal' or 'TimeData'. ``'freq_raw'`` Convert frequency domain data without normalization. Signal must be of type 'Signal'. The default is ``'freq'``. log_prefix : int The prefix for the dB calculation. The default ``None``, uses ``10`` for signals with ``'psd'`` and ``'power'`` FFT normalization and ``20`` otherwise. log_reference : int or float Reference for the logarithm calculation. List of commonly used values: +---------------------------------+--------------+ | log_reference | value | +=================================+==============+ | Digital signals (dBFs) | 1 | +---------------------------------+--------------+ | Sound pressure :math:`L_p` (dB) | 2e-5 Pa | +---------------------------------+--------------+ | Voltage :math:`L_V` (dBu) | 0.7746 volt | +---------------------------------+--------------+ | Sound intensity :math:`L_I` (dB)| 1e-12 W/m² | +---------------------------------+--------------+ | Voltage :math:`L_V` (dBV) | 1 volt | +---------------------------------+--------------+ | Electric power :math:`L_P` (dB) | 1 watt | +---------------------------------+--------------+ The default is 1. return_prefix : bool, optional If return_prefix is ``True``, the function will also return the `log_prefix` value. This can be used to delogrithmize the data. The default is ``False``. Returns ------- decibel : numpy.ndarray The given signal in decibel in chosen domain. log_prefix : int or float Will be returned if `return_prefix` is set to ``True``. Examples -------- >>> import pyfar as pf >>> signal = pf.signals.noise(41000, rms=[1, 1]) >>> decibel_data = decibel(signal, domain='time') """ if log_prefix is None: if isinstance(signal, pyfar.Signal) and signal.fft_norm in ('power', 'psd'): log_prefix = 10 else: log_prefix = 20 if domain == 'freq': if isinstance(signal, (pyfar.FrequencyData, pyfar.Signal)): data = signal.freq.copy() else: raise ValueError( f"Domain is '{domain}' and signal is type '{signal.__class__}'" " but must be of type 'Signal' or 'FrequencyData'.") elif domain == 'time': if isinstance(signal, (pyfar.TimeData, pyfar.Signal)): data = signal.time.copy() else: raise ValueError( f"Domain is '{domain}' and signal is type '{signal.__class__}'" " but must be of type 'Signal' or 'TimeData'.") elif domain == 'freq_raw': if isinstance(signal, (pyfar.Signal)): data = signal.freq_raw.copy() else: raise ValueError( f"Domain is '{domain}' and signal is type '{signal.__class__}'" " but must be of type 'Signal'.") else: raise ValueError( f"Domain is '{domain}', but has to be 'time', 'freq'," " or 'freq_raw'.") data[data == 0] = np.finfo(float).eps if return_prefix is True: return log_prefix * np.log10(np.abs(data) / log_reference), log_prefix else: return log_prefix * np.log10(np.abs(data) / log_reference)
[docs] def soft_limit_spectrum(signal, limit, knee, frequency_range=None, direction='upper', log_prefix=None): """ Soft limiting the magniude spectrum. Soft limiting gradually increases the gain reduction to avoid discontinuities in the data that would appear in hard limiting. The transition between the magnitude where no limiting is applied to the magnitude where the limiting reaches its full effect is termed `knee` (see examples below). Note that the limiting is applied on `signal.freq`, i.e. the data after the FFT normalization. Parameters ---------- signal : Signal, FrequencyData The input data limit : number, array like The gain in dB at which the limiting reaches its full effect. If this is a number, the same limit is applied to all frequencies. If this an array like, it must be broadcastable to ``signal.freq`` to apply frequency-dependent limits. knee : number, string If this is a number, a knee with a width of `number` dB according to [#]_ Eq. (4) is applied. This definition of the knee originates from the classic limiting audio effect. If this is ``'arctan'`` an arcus tangens knee according to [#]_ Section 3.6.4 is applied. This knee definition originates from microphone array signal processing. frequency_range : array like, optional Frequency range in which the limiting is applied. This must be an array like containing the lower and upper limit in Hz. The default ``None`` applies the limiting to all frequencies. direction : str, optional Define how the limiting works ``'upper'`` (default) Soft limiting `signal` to enforce an aboslute maximum value of `limit`. ``'lower'`` Soft limiting `signal` to enforce an absolute minimum value of `limit` log_prefix: float, int The log prefix is used to linearize the limit and knee, e.g., ``limit_linear = 10**(limit / log_prefix)``.The default ``None``, uses ``10`` for signals with ``'psd'`` and ``'power'`` FFT normalization and ``20`` otherwise. Returns ------- limited : Signal, FrequencyData The limited copy of the input data. Examples -------- Illustrate effect of limit and knee .. plot :: >>> import pyfar as pf >>> import numpy as np >>> >>> signal = pf.FrequencyData( ... 10**(np.arange(-20, 21)/20), np.arange(0, 41)) >>> for knee in ['arctan', 20, 0]: >>> limited = pf.dsp.soft_limit_spectrum(signal, 0, knee) >>> pf.plot.freq(limited, freq_scale='linear', label=f'{knee=}') >>> ax = pf.plot.freq(signal, freq_scale='linear', ... linestyle='--', label='input') >>> >>> ax.legend(loc='upper left') >>> ax.set_xlim(0, 40) >>> ax.set_ylim(-20, 20) >>> bbox=dict(facecolor='white', edgecolor='none', alpha=0.5) >>> arrowprops= dict( ... arrowstyle="<->", shrinkA=0, shrinkB=0, ... color=pf.plot.color('r')) >>> ax.annotate("limit=0 dB", (20, 0), (10, 0), bbox=bbox, ... arrowprops=dict(arrowstyle="->"), va='center') >>> ax.text(20, -14, 'knee=20 dB', ha='center', ... color=pf.plot.color('r'), bbox=bbox) >>> ax.annotate("", (10, -15), (30, -15), arrowprops=arrowprops) Apply limiting with knee (soft limiting) and without knee (hard limiting) .. plot :: >>> import pyfar as pf >>> >>> signal = pf.signals.impulse(4096) >>> signal = pf.dsp.filter.bell(signal, 1e3, 20, 1) >>> >>> soft = pf.dsp.soft_limit_spectrum(signal, limit=10, knee=12) >>> hard = pf.dsp.soft_limit_spectrum(signal, limit=10, knee=0) >>> >>> pf.plot.freq(soft, label='soft (knee > 0)') >>> pf.plot.freq(hard, label='hard (knee = 0)') >>> ax = pf.plot.freq(signal, ls='--', label='original') >>> >>> ax.set_ylim(-5, 25) >>> ax.legend() Apply soft limiting above and below +/-10 dB .. plot :: >>> import pyfar as pf >>> >>> signal = pf.signals.impulse(4096) >>> signal = pf.dsp.filter.bell(signal, 2e2, -20, 3) >>> signal = pf.dsp.filter.bell(signal, 6e3, 20, 3) >>> >>> upper = pf.dsp.soft_limit_spectrum( ... signal, limit=10, knee=6, direction="upper") >>> lower = pf.dsp.soft_limit_spectrum( ... signal, limit=-10, knee=6, direction="lower") >>> >>> pf.plot.freq(upper, label='upper limit') >>> pf.plot.freq(lower, label='lower limit') >>> ax = pf.plot.freq(signal, ls='--', label='original') >>> >>> ax.set_ylim(-25, 25) >>> ax.legend() Apply frequency dependent soft limiting .. plot :: >>> import pyfar as pf >>> >>> # input data >>> signal = pf.signals.impulse(2**13) >>> signal = pf.dsp.filter.bell(signal, 2e2, 20, 4) >>> signal = pf.dsp.filter.bell(signal, 2e3, 20, 4) >>> >>> # frequency dependent limit >>> limit = pf.dsp.filter.low_shelf( ... pf.signals.impulse(2**13), 500, -10, 2) * 10 >>> limit = pf.dsp.decibel(limit).flatten() >>> >>> # soft limiting input signal >>> limited = pf.dsp.soft_limit_spectrum(signal, limit, 10) >>> >>> # plot >>> ax = pf.plot.freq(signal, label='original') >>> pf.plot.freq(limited, label='limited') >>> ax.plot(signal.frequencies, limit, label='limit', c='k', ls='--') >>> ax.set_ylim(-5, 25) >>> ax.legend(loc='upper left') References ---------- .. [#] B. Bernschütz, Microphone arrays and sound field decomposition for dynamic binaural synthesis, Ph.D Thesis, (Berlin, Germany, TU Berlin, 2016). .. [#] D. Giannoulis, M. Massberg, and J. D. Reiss, Digital Dynamic Range Compressor Design—A Tutorial and Analysis, J. Audio Eng. Soc. 60, 399-408 (2012). """ # check input if not isinstance(signal, (pyfar.Signal, pyfar.FrequencyData)): raise TypeError( "input signal must be a pyfar Signal or FrequencyData object") if direction not in ['upper', 'lower']: raise ValueError((f"direction is '{direction}' but must be 'upper', " "or 'lower'")) if isinstance(knee, str) and knee != "arctan": raise ValueError(f"knee is '{knee}' but 'arctan'") elif isinstance(knee, (int, float)) and knee < 0: raise ValueError(f"knee is {knee} but must be >= 0") elif not isinstance(knee, (str, int, float)): raise TypeError("knee must be a string or number") limit = np.broadcast_to(limit, signal.cshape + (signal.n_bins, )) # define frequency range if frequency_range is None: freq_mask = np.full((signal.n_bins, ), True) else: freq_mask = np.full(signal.n_bins, False) freq_mask[signal.find_nearest_frequency(np.min(frequency_range)): signal.find_nearest_frequency(np.max(frequency_range)) + 1] \ = True # get spectral data signal_limited = signal.copy() freq = signal_limited.freq # handle 'inverse' limiting if direction == 'lower': freq[freq == 0] = np.finfo(float).eps freq = 1 / freq limit = -limit # de-logarithmize the limit if log_prefix is None: if (type(signal) is pyfar.Signal and signal.fft_norm not in ('power', 'psd')) or \ type(signal) is pyfar.FrequencyData: log_prefix = 20 else: log_prefix = 10 limit_lin = 10**(limit/log_prefix) # absolute spectrum freq_abs = np.abs(freq) # arcus tangens limiting if knee == "arctan": alpha = freq_abs[..., freq_mask] / limit_lin[..., freq_mask] freq[..., freq_mask] *= \ 2/np.pi / alpha * np.arctan(np.pi/2 * alpha) # classic audio effect limiting else: # log spectrum freq_db = log_prefix * np.log10(freq_abs) # hard limiting outside the knee (Giannoulis et al. Eq. (4)) ---------- hard = np.logical_and(2 * (freq_db - limit) > knee, freq_mask) gain_hard = limit_lin[..., hard] freq[..., hard] *= gain_hard / freq_abs[..., hard] # soft limiting inside the knee (Giannoulis et al. Eq. (4)) ---------- if knee != 0: # frequencies, where limiting is applied soft = np.logical_and( 2 * np.abs(freq_db - limit) <= knee, freq_mask) # gain factor gain_soft = -(freq_db[..., soft] - limit[..., soft] + knee / 2)**2\ / (2 * knee) # apply limiting freq[..., soft] *= 10**(gain_soft / log_prefix) if direction == "lower": freq = 1 / freq signal_limited.freq = freq return signal_limited
[docs] def energy(signal): r""" Computes the channel wise energy in the time domain. .. math:: \sum_{n=0}^{N-1}|x[n]|^2=\frac{1}{N}\sum_{k=0}^{N-1}|X[k]|^2, which is equivalent to the frequency domain computation according to Parseval's theorem [#]_. Parameters ---------- signal : Signal The signal to compute the energy from. Returns ------- data : numpy.ndarray The channel-wise energy of the input signal. Notes ----- Due to the calculation based on the time data, the returned energy is independent of the signal's ``fft_norm``. :py:func:`~pyfar.dsp.power` and :py:func:`~pyfar.dsp.rms` can be used to compute the power and the rms of a signal. References ---------- .. [#] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, (Upper Saddle et al., Pearson, 2010), Third edition. """ # check input if not isinstance(signal, pyfar.Signal): raise ValueError(f"signal is type '{signal.__class__}'" " but must be of type 'Signal'.") if isinstance(signal, (pyfar.Signal, pyfar.TimeData)): if signal.complex: raise ValueError(( "'energy' is not implemented for complex time signals.")) # return and compute data return np.sum(np.abs(signal.time)**2, axis=-1)
[docs] def power(signal): r""" Compute the power of a signal. The power is calculated as .. math:: \frac{1}{N}\sum_{n=0}^{N-1}|x[n]|^2 based on the time data for each channel separately. Parameters ---------- signal : Signal The signal to compute the power from. Returns ------- data : numpy.ndarray The channel-wise power of the input signal. Notes ----- Due to the calculation based on the time data, the returned power is independent of the signal's ``fft_norm``. The power equals the squared RMS of a signal. :py:func:`~pyfar.dsp.energy` and :py:func:`~pyfar.dsp.rms` can be used to compute the energy and the RMS. """ # check input if not isinstance(signal, pyfar.Signal): raise ValueError(f"signal is type '{signal.__class__}'" " but must be of type 'Signal'.") if isinstance(signal, (pyfar.Signal, pyfar.TimeData)): if signal.complex: raise ValueError(( "'power' is not implemented for complex time signals.")) # return and compute data return np.sum(np.abs(signal.time)**2, axis=-1)/signal.n_samples
[docs] def rms(signal): r""" Compute the root mean square (RMS) of a signal. The RMS is calculated as .. math:: \sqrt{\frac{1}{N}\sum_{n=0}^{N-1}|x[n]|^2} based on the time data for each channel separately. Parameters ---------- signal : Signal The signal to compute the RMS from. Returns ------- data : numpy.ndarray The channel-wise RMS of the input signal. Notes ----- The RMS equals the square root of the signal's power. :py:func:`~pyfar.dsp.energy` and :py:func:`~pyfar.dsp.power` can be used to compute the energy and the power. """ # check input if not isinstance(signal, pyfar.Signal): raise ValueError(f"signal is type '{signal.__class__}'" " but must be of type 'Signal'.") if isinstance(signal, (pyfar.Signal, pyfar.TimeData)): if signal.complex: raise ValueError(( "'rms' is not implemented for complex time signals.")) # return and compute data return np.sqrt(power(signal))
[docs] def average(signal, mode='linear', caxis=None, weights=None, keepdims=False, nan_policy='raise'): """ Average multi-channel signals. Parameters ---------- signal: Signal, TimeData, FrequencyData Input signal. mode: string ``'linear'`` Average ``signal.time`` if the signal is in the time domain and ``signal.freq`` if the signal is in the frequency domain. Note that these operations are equivalent for `Signal` objects due to the linearity of the averaging and the FFT. ``'magnitude_zerophase'`` Average the magnitude spectra and discard the phase. ``'magnitude_phase'`` Average the magnitude spectra and the unwrapped phase separatly. ``'power'`` Average the power spectra :math:`|X|^2` and discard the phase. The squaring of the spectra is reversed before returning the averaged signal. ``'log_magnitude_zerophase'`` Average the logarithmic magnitude spectra using :py:func:`~pyfar.dsp.decibel` and discard the phase. The logarithm is reversed before returning the averaged signal. The default is ``'linear'`` caxis: None, int, or tuple of ints, optional Channel axes (`caxis`) along which the averaging is done. The caxis denotes an axis of the data inside an audio object but ignores the last axis that contains the time samples or frequency bins. The default ``None`` averages across all channels. weights: array like Array with channel weights for averaging the data. Must be broadcastable to :py:func:`~pyfar.Signal.cshape`. The default is ``None``, which applies equal weights to all channels. keepdims: bool, optional If this is ``True``, the axes which are reduced during the averaging are kept as a dimension with size one. Otherwise, singular dimensions will be squeezed after averaging. The default is ``False``. nan_policy: string, optional Define how to handle NaNs in input signal. ``'propagate'`` If the input signal includes NaNs, the corresponding averaged output signal value will be NaN. ``'omit'`` NaNs will be omitted while averaging. For each NaN value, the number of values used for the average operation is also reduced by one. If a signal contains only NaN values in a specific dimensions, the output will be zero. For example if the second sample of a multi channel signal is always NaN, the average will be zero at the second sample. ``'raise'`` A ``'ValueError'`` will be raised, if the input signal includes NaNs. The default is ``'raise'``. Returns ------- averaged_signal: Signal, TimeData, FrequencyData Averaged input Signal. Notes ----- The functions :py:func:`~pyfar.dsp.linear_phase` and :py:func:`~pyfar.dsp.minimum_phase` can be used to obtain a phase for magnitude spectra after using a mode that discards the phase. """ # check input if not isinstance(signal, (pyfar.Signal, pyfar.FrequencyData, pyfar.TimeData)): raise TypeError(("Input data has to be of type 'Signal', 'TimeData' " "or 'FrequencyData'.")) if isinstance(signal, (pyfar.Signal, pyfar.TimeData)): if signal.complex and mode == 'power': raise ValueError(( "'power' is not implemented for complex time signals.")) if type(signal) is pyfar.TimeData and mode in ( 'log_magnitude_zerophase', 'magnitude_zerophase', 'magnitude_phase', 'power'): raise ValueError(( f"mode is '{mode}' and signal is type '{signal.__class__}'" " but must be of type 'Signal' or 'FrequencyData'.")) if nan_policy not in ('propagate', 'omit', 'raise'): raise ValueError("nan_policy has to be 'propagate', 'omit', or" "'raise'.") # check for caxis if caxis and np.max(caxis) > len(signal.cshape): raise ValueError(('The maximum of caxis needs to be smaller than ' 'len(signal.cshape).')) # set caxis default if caxis is None: caxis = tuple(i for i in range(len((signal.cshape)))) # check if averaging over one dimensional caxis if 1 in signal.cshape: for ax in caxis: if signal.cshape[ax] == 1: warnings.warn( f"Averaging one dimensional caxis={caxis}.", stacklevel=2) if not isinstance(caxis, int): axis = tuple([cax-1 if cax < 0 else cax for cax in caxis]) else: axis = caxis-1 if caxis < 0 else caxis # convert data to desired domain if mode == 'linear': data = signal.time if signal.domain == 'time' else signal.freq elif mode == 'magnitude_zerophase': data = np.abs(signal.freq) elif mode == 'magnitude_phase': data = [np.abs(signal.freq), pyfar.dsp.phase(signal, unwrap=True)] elif mode == 'power': data = np.abs(signal.freq)**2 elif mode == 'log_magnitude_zerophase': data, log_prefix = pyfar.dsp.decibel(signal, 'freq', return_prefix=True) else: raise ValueError( """mode must be 'linear', 'magnitude_zerophase', 'power', 'magnitude_phase' or 'log_magnitude_zerophase'.""", ) # check if data includes NaNs and raise error or create masked array if nan_policy == 'raise' and np.any(np.isnan(data)): raise ValueError("The signal includes NaNs. Change 'nan_policy' to " "'propagate' or 'omit'.") elif nan_policy == 'omit' and np.any(np.isnan(data)): data = np.ma.masked_array(data, np.isnan(data)) # set weights default if weights is not None: weights = np.broadcast_to(np.array(weights)[..., None], data.shape) # average the data if mode == 'magnitude_phase': data = [np.average(d, axis=axis, weights=weights, keepdims=keepdims) for d in data] data = data[0] * np.exp(1j * data[1]) else: data = np.average(data, axis=axis, weights=weights, keepdims=keepdims) # reconstruct frequency data if mode == 'power': data = np.sqrt(data) elif mode == 'log_magnitude_zerophase': data = 10**(data/log_prefix) # return average data as pyfar object, depending on input signal type if isinstance(signal, pyfar.Signal): return pyfar.Signal(data, signal.sampling_rate, signal.n_samples, signal.domain, signal.fft_norm, signal.comment, signal.complex) elif isinstance(signal, pyfar.TimeData): return pyfar.TimeData(data, signal.times, signal.comment, signal.complex) else: return pyfar.FrequencyData(data, signal.frequencies, signal.comment)
[docs] def normalize(signal, reference_method='max', domain='auto', channel_handling='individual', target=1, limits=(None, None), unit=None, return_reference=False, nan_policy='raise'): """ Apply a normalization. In the default case, the normalization ensures that the maximum absolute amplitude of the signal after normalization is 1. This is achieved by the multiplication ``signal_normalized = signal * target / reference``, where `target` equals 1 and `reference` is the maximum absolute amplitude before the normalization. Several normalizations are possible, which in fact are different ways of computing the `reference` value (e.g. based on the spectrum). See the parameters for details. Parameters ---------- signal: Signal, TimeData, FrequencyData Input signal. reference_method: string, optional Reference method to compute the channel-wise `reference` value using the data according to `domain`. ``'max'`` Compute the maximum absolute value per channel. ``'mean'`` Compute the mean absolute values per channel. ``'energy'`` Compute the energy per channel using :py:func:`~pyfar.dsp.energy`. ``'power'`` Compute the power per channel using :py:func:`~pyfar.dsp.power`. ``'rms'`` Compute the RMS per channel using :py:func:`~pyfar.dsp.rms`. The default is ``'max'``. domain: string Determines which data is used to compute the `reference` value. ``'time'`` Use the absolute of the time domain data ``np.abs(signal.time)``. ``'freq'`` Use the magnitude spectrum ``np.abs(signal.freq)``. Note that the normalized magnitude spectrum is used pyfar examples gallery (cf. :ref:`FFT normalization<gallery:/gallery/interactive/fast_fourier_transform.ipynb#FFT-normalizations>`). ``'auto'`` Uses ``'time'`` domain normalization for :py:class:`Signal <pyfar.Signal>` and :py:class:`TimeData <pyfar.TimeData>` objects and ``'freq'`` domain normalization for :py:class:`FrequencyData <pyfar.FrequencyData>` objects. The default is ``'auto'``. channel_handling: string, optional Define how channel-wise `reference` values are handeled for multi- channel signals. This parameter does not affect single-channel signals. ``'individual'`` Separate normalization of each channel individually. ``'max'`` Normalize to the maximum `reference` value across channels. ``'min'`` Normalize to the minimum `reference` value across channels. ``'mean'`` Normalize to the mean `reference` value across the channels. The default is ``'individual'``. target: scalar, array The target to which the signal is normalized. Can be a scalar or an array. In the latter case the shape of `target` must be broadcastable to :py:func:`~pyfar.Signal.cshape`. The default is ``1``. limits: tuple, array_like Restrict the time or frequency range that is used to compute the `reference` value. Two element tuple specifying upper and lower limit according to `domain` and `unit`. A `None` element means no upper or lower limitation. The default ``(None, None)`` uses the entire signal. Note that in case of limiting in samples or bins with ``unit=None``, the second value defines the first sample/bin that is excluded. Also note that `limits` need to be ``(None, None)`` if `reference_method` is ``rms``, ``power`` or ``energy``. unit: string, optional Unit of `limits`. ``'s'`` Set limits in seconds in case of time domain normalization. Uses :py:class:`~signal.find_nearest_time` to find the limits. ``'Hz'`` Set limits in hertz in case of frequency domain normalization. Uses :py:class:`~signal.find_nearest_frequency` The default ``None`` assumes that `limits` is given in samples in case of time domain normalization and in bins in case of frequency domain normalization. return_reference: bool If ``return_reference=True``, the function also returns the `reference` values for the channels. The default is ``False``. nan_policy: string, optional Define how to handle NaNs in input signal. ``'propagate'`` If the input signal includes NaNs within the time or frequency range , NaN will be used as normalization reference. The resulting output signal values are NaN. ``'omit'`` NaNs will be omitted in the normalization. Cshape will still remain, as the normalized signal still includes the NaNs. ``'raise'`` A ``ValueError`` will be raised, if the input signal includes NaNs. The default is 'raise'. Returns ------- normalized_signal: Signal, TimeData, FrequencyData The normalized input signal. reference_norm: numpy.ndarray The reference values used for normalization. Only returned if `return_reference` is ``True``. Examples -------- Time domain normalization with default parameters .. plot:: >>> import pyfar as pf >>> signal = pf.signals.sine(1e3, 441, amplitude=2) >>> signal_norm = pf.dsp.normalize(signal) >>> # Plot input and normalized Signal >>> ax = pf.plot.time(signal, label='Original Signal', unit='ms') >>> pf.plot.time(signal_norm, label='Normalized Signal', unit='ms') >>> ax.legend() Frequency normalization with a restricted frequency range and targed in dB .. plot:: >>> import pyfar as pf >>> sine1 = pf.signals.sine(1e3, 441, amplitude=2) >>> sine2 = pf.signals.sine(5e2, 441, amplitude=.5) >>> signal = sine1 + sine2 >>> # Normalize to dB target in restricted frequency range >>> target_dB = 0 >>> signal_norm = pf.dsp.normalize(signal, target=10**(target_dB/20), ... domain="freq", limits=(400, 600), unit="Hz") >>> # Plot input and normalized Signal >>> ax = pf.plot.time_freq(signal_norm, label='Normalized Signal', ... unit='ms') >>> pf.plot.time_freq(signal, label='Original Signal', unit='ms') >>> ax[1].set_ylim(-15, 15) >>> ax[1].legend() """ # noqa: E501 # check input if not isinstance(signal, (pyfar.Signal, pyfar.FrequencyData, pyfar.TimeData)): raise TypeError(("Input data has to be of type 'Signal', 'TimeData' " "or 'FrequencyData'.")) if domain not in ('time', 'freq', 'auto'): raise ValueError("domain must be 'time', 'freq' or 'auto' but is" f" '{domain}'.") # get signal domain if domain = 'auto' if domain == 'auto' and type(signal) is pyfar.FrequencyData: domain = 'freq' elif domain == 'auto' and (type(signal) is pyfar.TimeData or type(signal) is pyfar.Signal): domain = 'time' if (type(signal) is pyfar.FrequencyData) and domain == 'time': raise ValueError(( f"domain is '{domain}' and signal is type '{signal.__class__}'" " but must be of type 'Signal' or 'TimeData'.")) if (type(signal) is pyfar.TimeData) and domain == 'freq': raise ValueError(( f"domain is '{domain}' and signal is type '{signal.__class__}'" " but must be of type 'Signal' or 'FrequencyData'.")) if isinstance(signal, (pyfar.TimeData, pyfar.Signal)): if signal.complex and reference_method in ['energy', 'power', 'rms']: raise ValueError("'energy', 'power', and 'rms' reference method " "is not implemented for complex time signals.") if isinstance(limits, (int, float)) or len(limits) != 2: raise ValueError("limits must be an array like of length 2.") if tuple(limits) != (None, None) and \ reference_method in ('energy', 'power', 'rms'): raise ValueError( "limits must be (None, None) if reference_method is " f"{reference_method}") if (domain == "time" and unit not in ("s", None)) or \ (domain == "freq" and unit not in ("Hz", None)): raise ValueError(f"'{unit}' is an invalid unit for domain {domain}") if nan_policy not in ('propagate', 'omit', 'raise'): raise ValueError("nan_policy has to be 'propagate', 'omit', or" "'raise'.") # raise error if input includes NaNs. check_nans = signal.time if domain == 'time' else signal.freq if nan_policy == 'raise' and True in np.isnan(check_nans): raise ValueError("The signal includes NaNs. Change 'nan_policy' to " "'propagate' or 'omit'.") # get and check the limits if domain == 'time': find = signal.find_nearest_time else: find = signal.find_nearest_frequency if unit in ("Hz", "s"): limits = [None if lim is None else find(lim) for lim in limits] if limits[0] == limits[1] and None not in limits: raise ValueError(("Upper and lower limit are identical. Use a " "longer signal or increase limits.")) # get values for normalization energy, power or rms if reference_method == 'energy': reference = pyfar.dsp.energy(signal) elif reference_method == 'power': reference = pyfar.dsp.power(signal) elif reference_method == 'rms': reference = pyfar.dsp.rms(signal) elif reference_method in ('max', 'mean'): # prepare data for max or mean normalization. if domain == 'time': input_data = np.abs(signal.time) else: input_data = np.abs(signal.freq) # create masked array if data includes NaNs and nan_policy is omit if nan_policy == 'omit' and True in np.isnan(input_data): input_data = np.ma.masked_array(input_data, np.isnan(input_data)) # get values for normalization max or mean if reference_method == 'max': reference = np.max(input_data[..., limits[0]:limits[1]], axis=-1) elif reference_method == 'mean': reference = np.mean(input_data[..., limits[0]:limits[1]], axis=-1) else: raise ValueError(("reference_method must be 'max', 'mean', 'power', " "'energy' or 'rms'.")) # Channel Handling if channel_handling == 'individual': reference_norm = reference.copy() elif channel_handling == 'max': reference_norm = np.max(reference) elif channel_handling == 'min': reference_norm = np.min(reference) elif channel_handling == 'mean': reference_norm = np.mean(reference) else: raise ValueError(("channel_handling must be 'individual', 'max', " "'min' or 'mean'.")) # apply normalization normalized_signal = signal.copy() * target / reference_norm if return_reference: return normalized_signal, reference_norm else: return normalized_signal